Type Here to Get Search Results !

Trigonometric Ratios and Identities

0

 📌 What Are Trigonometric Ratios?

Trigonometric Ratios relate the angles of a right-angled triangle to the ratios of its sides. These are fundamental in solving geometry-based quantitative problems.

Let θ be an acute angle in a right triangle:

  • Hypotenuse (H): The side opposite the right angle

  • Opposite Side (O): Side opposite to angle θ

  • Adjacent Side (A): Side adjacent to angle θ (other than hypotenuse)

🔻 Basic Trigonometric Ratios:

RatioFormulaAlso written as
sin θOpposite / HypotenuseO/H
cos θAdjacent / HypotenuseA/H
tan θOpposite / AdjacentO/A
cot θAdjacent / OppositeA/O = 1/tan θ
sec θHypotenuse / AdjacentH/A = 1/cos θ
cosec θHypotenuse / OppositeH/O = 1/sin θ

📌 Standard Values of Trigonometric Ratios
θ (degrees)         sin θ         cos θ        tan θ
           0°              0                 1       0
          30°              ½               √3⁄2     1⁄√3
          45°            1⁄√2               1⁄√2       1
          60°            √3⁄2                  ½     √3
          90°              1                 0      ∞

Tip: Remember the mnemonic → sin: 0, ½, 1/√2, √3/2, 1

(then reverse for cos)

📌 Trigonometric Identities

These are algebraic relations that are always true for any value of θ.

🔹 Fundamental Identities:

  1. sin²θ + cos²θ = 1

  2. 1 + tan²θ = sec²θ

  3. 1 + cot²θ = cosec²θ

🔹 Reciprocal Identities:

  • sin θ = 1 / cosec θ

  • cos θ = 1 / sec θ

  • tan θ = 1 / cot θ (and vice versa)

🔹 Quotient Identities:

  • tan θ = sin θ / cos θ

  • cot θ = cos θ / sin θ

📌 Co-Function Identities

  • sin(90° – θ) = cos θ

  • cos(90° – θ) = sin θ

  • tan(90° – θ) = cot θ

  • cot(90° – θ) = tan θ

  • sec(90° – θ) = cosec θ

  • cosec(90° – θ) = sec θ

📝 These are useful in angle transformation questions.

📌 Negative Angle Identities

  • sin(–θ) = –sin θ

  • cos(–θ) = cos θ

  • tan(–θ) = –tan θ

  • cot(–θ) = –cot θ

  • sec(–θ) = sec θ

  • cosec(–θ) = –cosec θ

Note: Sine, tangent, cotangent, and cosecant are odd functions; cosine and secant are even.

📌 Sum, Difference, Product Trigonometric Ratios Identities

🔷 Sum and Difference Formulas

✅ Sine Formulas
                          sin (A + B) = sin A cos B + cos A sin B
                          sin (A - B) = sin A cos B - cos A sin B
✅ Cosine Formulas        
                          cos (A + B) = cos A cos B - sin A sin B
                          cos (A - B) = cos A cos B + sin A sin B
✅ Tangent Formulas          
                          tan (A + B) = (tan A + tan B)/ (1 - tan A tan B)
                          tan (A - B) = (tan A - tan B)/ (1 + tan A tan B)
✅ Cotangent Formulas
                          cot (A + B) = (cot A cot B - 1)/(cot B - cot A)
                          cot (A - B) = (cot A cot B + 1)/(cot B - cot A)

🔷Product-to-Sum Identities

                          2 sin A⋅cos B = sin(A + B) + sin(A - B)

                          2 cos A⋅cos B = cos(A + B) + cos(A - B)

                          2 sin A⋅sin B = cos(A - B) - cos(A + B)

📌 Complementary Angle Shortcuts

These can quickly help in solving problems without using calculators:

  • sin 30° = cos 60° = ½

  • sin 45° = cos 45° = 1⁄√2

  • sin 60° = cos 30° = √3⁄2

📌 Examples

Example 1:
If sin θ = 3⁄5, find cos θ and tan θ.

Solution:
sin θ = Opposite / Hypotenuse = 3/5
⇒ Opposite = 3, Hypotenuse = 5
Using Pythagoras: Adjacent = √(5² – 3²) = √(25 – 9) = √16 = 4

⇒ cos θ = 4/5
⇒ tan θ = 3/4

Example 2:
Prove that 1 + tan² θ = sec² θ

Solution:
From definitions:
tan θ = sin θ / cos θ
sec θ = 1 / cos θ

So,
1 + tan² θ = 1 + (sin² θ / cos² θ)
= (cos² θ + sin² θ) / cos² θ
= 1 / cos² θ = sec² θ ✅

📌 Tips and Tricks

✅ Memorize values of sin, cos, and tan for 0°, 30°, 45°, 60°, and 90°
✅ Use identities to convert and simplify complex expressions
✅ In exams, always reduce the problem using identities wherever possible
✅ SOH-CAH-TOA helps remember the basic ratios

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.