📌 What Are Trigonometric Ratios?
Trigonometric Ratios relate the angles of a right-angled triangle to the ratios of its sides. These are fundamental in solving geometry-based quantitative problems.
Let θ be an acute angle in a right triangle:
-
Hypotenuse (H): The side opposite the right angle
-
Opposite Side (O): Side opposite to angle θ
-
Adjacent Side (A): Side adjacent to angle θ (other than hypotenuse)
🔻 Basic Trigonometric Ratios:
Ratio | Formula | Also written as |
---|---|---|
sin θ | Opposite / Hypotenuse | O/H |
cos θ | Adjacent / Hypotenuse | A/H |
tan θ | Opposite / Adjacent | O/A |
cot θ | Adjacent / Opposite | A/O = 1/tan θ |
sec θ | Hypotenuse / Adjacent | H/A = 1/cos θ |
cosec θ | Hypotenuse / Opposite | H/O = 1/sin θ |
θ (degrees) | sin θ | cos θ | tan θ |
---|---|---|---|
0° | 0 | 1 | 0 |
30° | ½ | √3⁄2 | 1⁄√3 |
45° | 1⁄√2 | 1⁄√2 | 1 |
60° | √3⁄2 | ½ | √3 |
90° | 1 | 0 | ∞ |
(then reverse for cos)
📌 Trigonometric Identities
These are algebraic relations that are always true for any value of θ.
🔹 Fundamental Identities:
-
sin²θ + cos²θ = 1
-
1 + tan²θ = sec²θ
-
1 + cot²θ = cosec²θ
🔹 Reciprocal Identities:
-
sin θ = 1 / cosec θ
-
cos θ = 1 / sec θ
-
tan θ = 1 / cot θ (and vice versa)
🔹 Quotient Identities:
-
tan θ = sin θ / cos θ
-
cot θ = cos θ / sin θ
📌 Co-Function Identities
-
sin(90° – θ) = cos θ
-
cos(90° – θ) = sin θ
-
tan(90° – θ) = cot θ
-
cot(90° – θ) = tan θ
-
sec(90° – θ) = cosec θ
-
cosec(90° – θ) = sec θ
📝 These are useful in angle transformation questions.
📌 Negative Angle Identities
-
sin(–θ) = –sin θ
-
cos(–θ) = cos θ
-
tan(–θ) = –tan θ
-
cot(–θ) = –cot θ
-
sec(–θ) = sec θ
-
cosec(–θ) = –cosec θ
Note: Sine, tangent, cotangent, and cosecant are odd functions; cosine and secant are even.
📌 Sum, Difference, Product Trigonometric Ratios Identities
🔷 Sum and Difference Formulas
cos (A - B) = cos A cos B + sin A sin B
✅ Tangent Formulas
tan (A - B) = (tan A - tan B)/ (1 + tan A tan B)
✅ Cotangent Formulas
cot (A - B) = (cot A cot B + 1)/(cot B - cot A)
🔷Product-to-Sum Identities
2 sin A⋅cos B = sin(A + B) + sin(A - B)
2 cos A⋅cos B = cos(A + B) + cos(A - B)
📌 Complementary Angle Shortcuts
These can quickly help in solving problems without using calculators:
-
sin 30° = cos 60° = ½
-
sin 45° = cos 45° = 1⁄√2
-
sin 60° = cos 30° = √3⁄2
📌 Examples
Example 1:
If sin θ = 3⁄5, find cos θ and tan θ.
Solution:
sin θ = Opposite / Hypotenuse = 3/5
⇒ Opposite = 3, Hypotenuse = 5
Using Pythagoras: Adjacent = √(5² – 3²) = √(25 – 9) = √16 = 4
⇒ cos θ = 4/5
⇒ tan θ = 3/4
Example 2:
Prove that 1 + tan² θ = sec² θ
Solution:
From definitions:
tan θ = sin θ / cos θ
sec θ = 1 / cos θ
So,
1 + tan² θ = 1 + (sin² θ / cos² θ)
= (cos² θ + sin² θ) / cos² θ
= 1 / cos² θ = sec² θ ✅
📌 Tips and Tricks
✅ Memorize values of sin, cos, and tan for 0°, 30°, 45°, 60°, and 90°
✅ Use identities to convert and simplify complex expressions
✅ In exams, always reduce the problem using identities wherever possible
✅ SOH-CAH-TOA helps remember the basic ratios