-->

Square Roots and Surds

 πŸ“Œ Introduction

Square Roots and Surds are essential for simplifying expressions, solving equations, and dealing with irrational numbers. You’ll often find these in arithmetic simplification, algebraic identities, and even Data Interpretation-based questions.

πŸ“Œ Definitions

πŸ”Ή Square Root (√):
The square root of a number x is a number y such that y² = x.
Example: √25 = 5, because 5² = 25.

Note: Square roots of perfect squares (like 4, 9, 16, 25) are rational. Others are irrational.

πŸ”Ή Surd:
A surd is an irrational root of a rational number. It cannot be simplified to remove the root sign completely.

Examples:
√2, √3, √5 are surds
√4 = 2 is not a surd (because it simplifies to a rational number)

πŸ“Œ Important Properties of Square Roots

  1. √(a × b) = √a × √b

  2. √(a / b) = √a / √b

  3. (√a)² = a

  4. √a + √b ≠ √(a + b)

  5. (a + √b)(a - √b) = a² - b

πŸ“Œ Common Square Roots to Remember

1² = 1  6² = 36  11² = 121
2² = 4  7² = 49  12² = 144
3² = 9  8² = 64  13² = 169
4² = 16  9² = 81  14² = 196
5² = 25  10² = 100 15² = 225

πŸ“Œ Simplification of Surds

To simplify:
√72 = √(36 × 2) = √36 × √2 = 6√2

General rule: Factor the number into squares and simplify the square roots.

πŸ“Œ Rationalizing the Denominator

Rationalizing means converting a denominator from irrational to rational by multiplying with a suitable form.

Examples:

  1. 1 / √2 = (1 / √2) × (√2 / √2) = √2 / 2

  2. 1 / (2 + √3) → multiply numerator & denominator by (2 - √3):

(1 / (2 + √3)) × ((2 - √3) / (2 - √3))
= (2 - √3) / (4 - 3) = (2 - √3) / 1 = 2 - √3

πŸ“Œ Surd Laws (Useful Shortcuts)

Let a, b be positive rational numbers and m, n be integers:

  • ⁠√a × √b = √(ab)

  • ⁠√a / √b = √(a/b)

  • ⁠(a + √b)(a - √b) = a² - b

  • ⁠1 / (a + √b) = (a - √b) / (a² - b)

πŸ“Œ Approximating Square Roots

For non-perfect squares:

  • √2 ≈ 1.414

  • √3 ≈ 1.732

  • √5 ≈ 2.236

  • √10 ≈ 3.162

Use these values for approximation problems in exams.

πŸ“Œ Important Patterns

  • (√a + √b)² = a + b + 2√ab

  • (√a - √b)² = a + b - 2√ab

  • (a + √b)(a - √b) = a² - b

πŸ“Œ Practice Examples

Example 1: Simplify √50 + √18
= √(25 × 2) + √(9 × 2)
= 5√2 + 3√2 = 8√2

Example 2: Rationalize 1 / (√5 - √3)
Multiply by (√5 + √3):
= (√5 + √3) / (5 - 3) = (√5 + √3) / 2

Example 3: If √x = 5, find x.
⇒ x = (√x)² = 5² = 25

Example 4: Simplify (√3 + 2)²
= (√3)² + 2×2×√3 + 2² = 3 + 4√3 + 4 = 7 + 4√3

πŸ“Œ Common Mistakes to Avoid

❌ √(a + b) ≠ √a + √b
❌ √(a - b) ≠ √a - √b
✅ Always factor numbers into perfect squares for simplification
✅ Always rationalize denominators if required

 πŸ“Œ Practice MCQs

Q1. Simplify: √12 + √27
A. 6√3
B. 3√5
C. 5√3
D. 3√3 + √3
✔️ Correct: A
√12 = 2√3, √27 = 3√3 → Total = 5√3

Q2. Rationalize: 1 / √3
A. √3 / 2
B. √3
C. √3 / 3
D. 1 / 3
✔️ Correct: C
Multiply by √3 ⇒ √3 / 3

Q3. Find x if √x = 7
A. 14
B. 49
C. 21
D. 13
✔️ Correct: B
x = (√x)² = 49

Q4. (√7 - 2)² = ?
A. 11 - 4√7
B. 7 - 4√7 + 4
C. 11 + 4√7
D. 7 + 4
✔️ Correct: A
= 7 - 4√7 + 4 = 11 - 4√7

 πŸ“Œ Summary Tips

  • Memorize squares from 1 to 30 for speed.

  • Simplify surds using factorization.

  • Rationalize when the denominator has a surd.

  • Apply algebraic identities involving roots.

Related Posts

Post a Comment

Subscribe Our Newsletter