-->

Elementary Algebra

πŸ”· Basic Terminology

TermDescriptionExample
VariableA symbol (usually x, y, z) representing a numberx, y
ConstantA fixed value2, -5, 7.5
CoefficientA number multiplying a variableIn 3x, 3 is the coefficient
TermA single variable or number5x, -3y, 2
ExpressionA combination of terms3x + 2y - 5
EquationTwo expressions are set equal3x + 5 = 11


πŸ”· Types of Algebraic Expressions

  • Monomial: One term → 5x5x

  • Binomial: Two terms → x+3x + 3

  • Trinomial: Three terms → x2+2x+1x^2 + 2x + 1

  • Polynomial: More than one term, can be of any degree.

πŸ”· Operations on Algebraic Expressions


➤ Addition & Subtraction

  • Combine like terms:

    4x+3x2x=5x4x + 3x - 2x = 5x

➤ Multiplication

  • Use distributive law:

    (a+b)(c+d)=ac+ad+bc+bd(a + b)(c + d) = ac + ad + bc + bd

➤ Division

  • Simplify by cancelling common factors:

    x29x3=x+3

πŸ”· Important Algebraic Identities

These are must-know shortcuts:

Identity No.Formula
(1)(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2
(2)(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2
(3)(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
(4)(x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = x^2 + (a + b)x + ab
(5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(6)a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)
(7)a3b3=(ab)(a2+ab+b2)


πŸ”· Linear Equations in One Variable

General Form:

ax+b=0x=ba​

Example:

3x+5=14x=93=3

πŸ”· Linear Equations in Two Variables

Form:

ax+by=cax + by = c

Solve using:

  • Substitution method

  • Elimination method

  • Cross multiplication

πŸ”· Quadratic Equations


General Form:

ax2+bx+c=0ax^2 + bx + c = 0

Solutions:

  • Factorization Method

  • Quadratic Formula:

    x=b±b24ac2a​

Discriminant:

  • If D=b24ac>0 → Real and distinct roots

  • If D=0D = 0 → Real and equal roots

  • If D<0 → Imaginary roots

πŸ”· Inequalities

RuleExample
Add/Subtract the same value on both sidesx+5<10x<5x + 5 < 10 \Rightarrow x < 5
Multiply/Divide by a positive number: sign remains2x<6x<32x < 6 \Rightarrow x < 3
Multiply/Divide by a negative number: reverse the sign2x<6x>3-2x < 6 \Rightarrow x > -3


πŸ”· Exponents and Powers

RuleExpressionResult
Product of powersamana^m \cdot a^n
am+n
Power of a power(am)n(a^m)^n
amna^{mn}
Quotient of powersaman\frac{a^m}{a^n}amna^{m-n}
Negative exponentana^{-n}
1an\frac{1}{a^n}
Zero exponenta0a^0
1


πŸ”· Algebraic Fractions

  • Simplify by factoring:

    x24x+2=(x2)(x+2)x+2=x2

πŸ”· Word Problems on Algebra

Types:

  • Age Problems
  • Work and Time
  • Speed, Time & Distance
  • Mixtures
  • Number Problems
  • Ratio and Proportion

Key Tip:

  • Define variables clearly
  • Set up the equation based on conditions
  • Solve and check for logic

πŸ”· Common Shortcuts & Tricks

Problem TypeShortcut
Product of 2 conjugates(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2
Sum of the first n natural numbersn(n+1)2\frac{n(n+1)}{2}
Sum of squaresn(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6}
Sum of cubes[n(n+1)2]2-


Here are 5 multiple-choice questions (MCQs) based on Elementary Algebra, complete with correct answers and short, descriptive analyses for each:

🟦 Question 1: Simplifying Expressions

Q1. What is the simplified form of the expression:
(2x + 3)(x − 4)?

A) 2x² − 5x − 12
B) 2x² − 8x + 3
C) 2x² − 5x − 15
D) 2x² − 8x − 12

Correct Answer: A) 2x² − 5x − 12

🧠 Explanation:
Use the distributive (FOIL) method:
(2x)(x) = 2x²
(2x)(−4) = −8x
(3)(x) = 3x
(3)(−4) = −12
Now combine: 2x² − 8x + 3x − 12 = 2x² − 5x − 12

—————

🟦 Question 2: Identity Application

Q2. Which identity is used to expand (a + b)²?

A) a² − 2ab + b²
B) a² + 2ab + b²
C) a² − b²
D) a³ + b³

Correct Answer: B) a² + 2ab + b²

🧠 Explanation:
This is a standard algebraic identity:
(a + b)² = a² + 2ab + b²
This helps in quickly expanding binomials without full multiplication.

—————

🟦 Question 3: Solving Linear Equations

Q3. Solve: 5x − 3 = 2x + 6

A) x = 1
B) x = 3
C) x = 9
D) x = −3

Correct Answer: B) x = 3

🧠 Explanation:
Step 1: Bring variables to one side
5x − 2x = 6 + 3
3x = 9
x = 9 ÷ 3 = 3

—————

🟦 Question 4: Quadratic Factorization

Q4. Factor the expression: x² − 7x + 12

A) (x − 3)(x − 4)
B) (x − 6)(x − 1)
C) (x − 2)(x − 5)
D) (x − 3)(x + 4)

Correct Answer: A) (x − 3)(x − 4)

🧠 Explanation:
We look for two numbers whose sum is −7 and product is +12.
−3 and −4 work: (−3) + (−4) = −7 and (−3)(−4) = 12
So the factorization is (x − 3)(x − 4)

—————

🟦 Question 5: Exponent Rule

Q5. Simplify: (2x³)²

A) 4x⁵
B) 4x⁶
C) 2x⁶
D) 8x⁵

Correct Answer: B) 4x⁶

🧠 Explanation:
Use (ab)^n = a^n × b^n
(2x³)² = 2² × (x³)² = 4 × x⁶ = 4x⁶

Related Posts

Post a Comment

Subscribe Our Newsletter